Reg. No.:	(d)		2

Question Paper Code: 31263

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Second Semester

Civil Engineering

MA 2161 — MATHEMATICS — II

(Common to all branches)
(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Find the particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 3x + 6$.
- 2. Show that e^{-x} , xe^{-x} are independent solutions of y'' + 2y' + y = 0 in any interval.
- 3. What is the directional derivative of $\phi = x^2yz 14xz^2$ at the point (1,-2,-1) in the direction of the vector $2\hat{i} \hat{j} 2\hat{k}$?
- 4. If S is any closed surface enclosing a volume V and $\overline{F} = ax\hat{i} + by\hat{j} + cz\hat{k}$, find $\int_S \overline{F} \cdot d\overline{S}$.
- 5. Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.
- 6. Find the invariant points of the transformation $w = \frac{z-1}{z+1}$.
- 7. Evaluate $\oint_C \frac{z+2}{z} dz$ where C is the semi-circle |z|-2 in the upper half of the z-plane.
- 8. Identify the singularities of $f(z) = \frac{z^2}{(z-3)^2(z^2+16)}$

- 9. Find L(f(t)) if $f(t) = \begin{cases} \cos(t 2\pi/3), & t > 2\pi/3 \\ 0, & t < 2\pi/3. \end{cases}$
- 10. Find the inverse Laplace transform of $\frac{6s}{s^2-16}$.

PART B - (5 × 16 = 80 marks)

11. (a) (i) Solve by the method of variation of parameters:

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x \,. \tag{8}$$

(ii) Solve: $Dx + Dy + 3x = \sin t$

$$Dx + y - x = \cos t. (8)$$

Or

(b) (i) Solve:
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$$
. (8)

(ii) Solve by the method of undetermined coefficients:

$$(D^2 - 2D)y = e^x \sin x. (8)$$

- 12. (a) Verify Green's theorem for $\int_C (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the boundary of the region bounded by x = 0, y = 0 and x + y = 1. (8)
 - (ii) Verify Gauss divergence theorem for $\overline{F} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ where S is the surface of the cuboid formed by the planes x = 0, x = a, y = 0, y = b, z = 0 and z = c.

Or

- (b) (i) A fluid motion is given by $V = ax\hat{i} + ay\hat{j} 2az\hat{k}$. Is it possible to find out the velocity potential? If so, find it. Is the motion possible for an incompressible fluid? (8)
 - (ii) Verify Stoke's theorem for $\overline{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary in the xy-plane. (8)

- 13. (a) (i) If f(z) is an analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log |f(z)| = 0. \tag{8}$
 - (ii) Find the analytic function z = u + iv, if $u v = \frac{x y}{x^2 + 4xy + y^2}$. (8)

Or

- (b) (i) Show that the transformation $w = \frac{1}{z}$ transforms all circles and straight lines into the circles and straight lines in the w-plane. Which circles in the z-plane become straight lines in the w-plane and which straight lines are transformed into other straight lines? (8)
 - (ii) Discuss the transformation $w = \frac{i(1-z)}{1+z}$ and show that it maps the circle |z|=1 into the real axis of the w-plane and the interior of the circle |z|<1 into the upper half of the w-plane. (8)
- 14. (a) (i) Find all possible Laurent's expansions of the function $f(z) = \frac{4-3z}{z(1-z)(2-z)} \text{ about } z=0. \text{ Indicate the region of convergence}$ in each case. Find also the residue of f(z) at z=0, using the appropriate Laurent's series. (10)
 - (ii) Evaluate $\int_C \frac{zdz}{(z-1)(z-2)^2}$, where C is the circle $|z-2| = \frac{1}{2}$, using Cauchy's residue theorem. (6)

Or

- (b) (i) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$ using contour integration, with a > b > 0. (8)
 - (ii) Using Cauchy's integral formula, evaluate $\int_C \frac{z+1}{z^3-2z^2} dz$ where C is the circle |z-2-i|=2.

- 15. (a) (i) Find $L^{-1}\left(\frac{s}{(s^2+1)^2}\right)$. Hence find $L^{-1}\left(\frac{1}{(s^2+1)^2}\right)$. (6)
 - (ii) Using convolution theorem, evaluate $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$. (5)
 - (iii) Find the Laplace transform of the function $f(t) = \begin{cases} a \sin wt, & 0 \le t \le \frac{\pi}{w} \\ 0, & \frac{\pi}{w} \le t \le \frac{2\pi}{w} \end{cases}$ (5)

Or

- (b) (i) Solve $y'' 4y' + 8y = e^{2t}$, y(0) = 2 and y'(0) = -2 using Laplace transform. (8)
 - (ii) Verify the initial and final value theorems when $f(t) = L^{-1} \left(\frac{1}{s(s+2)^2} \right). \tag{8}$